TEORIA CINETICA DE LOS GASES

Ver el tema anterior Ver el tema siguiente Ir abajo

TEORIA CINETICA DE LOS GASES

Mensaje  LUIS el Lun Ago 03, 2009 4:38 pm

INTRODUCCION
La termodinámica se ocupa solo de variables microscópicas, como la presión, la temperatura y el volumen. Sus leyes básicas,expresadas en términos de dichas cantidades, no se ocupan para nada de que la materia esta formada por átomos. Sin embargo, la mecánica estadística, que estudia las mismas áreas de la ciencia que la termodinámica, presupone la existencia de los átomos. Sus leyes básicas son las leyes de la mecánica,las que se aplican en los átomos que forman el sistema.

Teoría Cinético-Molecular de los Gases
En 1738 Daniel Bernouilli dedujo la Ley de Boyle aplicando a las moléculas las leyes del movimiento de Newton, pero su trabajo fue ignorado durante más de un siglo.
Los experimentos de Joule demostrando que el calor es una forma de energía hicieron renacer las ideas sostenidas por Bernouilli y en el período entre 1848 y 1898, Joule, Clausius, Maxwell y Boltzmann desarrollaron la teoría cinético-molecular, también llamada teoría cinética de los gases, que se basa en la idea de que todos los gases se comportan de la misma manera en lo referente al movimiento molecular .
En 1905 Einstein aplicó la teoría cinética al movimiento browniano de una partícula pequeña inmersa en un fluido y sus ecuaciones fueron confirmadas por los experimentos de Perrín en 1908, convenciendo de esta forma a los energéticos de la realidad de los átomos. La teoría cinética de los gases utiliza una descripción molecular para explicar el comportamiento macroscópico de la materia.
Gas Real
Los gases reales son los que en condiciones ordinarias de temperatura y presión se comportan como gases ideales; pero si la temperatura es muy baja o la presión muy alta, las propiedades de los gases reales se desvían en forma considerable de las de los gases ideales.
Concepto de Gas Ideal y diferencia entre Gas Ideal y Real.
Los Gases que se ajusten a estas suposiciones se llaman gases ideales y aquellas que no se les llama gases reales, o sea, hidrógeno, oxígeno, nitrógeno y otros.
1.- Un gas esta formado por partículas llamadas moléculas.
Dependiendo del gas, cada molécula esta formada por un átomo o un grupo de átomos. Si el gas es un elemento o un compuesto en su estado estable, consideramos que todas sus moléculas son idénticas.
2.- Las moléculas se encuentran animadas de movimiento aleatorio y
obedecen las leyes de Newton del movimiento.
Las moléculas se mueven en todas direcciones y a velocidades diferentes. Al calcular las propiedades del movimiento suponemos que la mecánica newtoniana se puede aplicar en el nivel microscópico. Como para todas nuestras suposiciones,esta mantendrá o desechara, dependiendo de sí los hechos experimentales indican o no que nuestras predicciones son correctas.
3.- El numero total de moléculas es grande.
La dirección y la rapidez del movimiento de cualquiera de las moléculas puede cambiar bruscamente en los choques con las paredes o con otras moléculas. Cualquiera de las moléculas en particular, seguirá una trayectoria de zigzag, debido a dichos choques. Sin embargo, como hay muchas moléculas, suponemos que el gran numero de choques resultante mantiene una distribución total de las velocidades moleculares con un movimiento promedio aleatorio.
4.- El volumen de las moléculas es una fracción despresiablemente pequeña del volumen ocupado por el gas.
Aunque hay muchas moléculas, son extremadamente pequeñas. Sabemos que el volumen ocupado por una gas se puede cambiar en un margen muy amplio, con poca dificultad y que, cuando un gas se condensa, el volumen ocupado por el liquida pueden ser miles de veces menor que la del gas se condensa. De aquí que nuestra suposición sea posible.
5.- No actúan fuerzas apreciables sobre las moléculas, excepto durante los choques.
En el grado de que esto sea cierto, una molécula se moverá con velocidad uniformemente los choques. Como hemos supuesto que las moléculas sean tan pequeñas, la distancia media entre ellas es grande en comparación con el tamaño de una de las moléculas. De aquí que supongamos que el alcance de las fuerzas moleculares es comparable al tamaño molecular.
6.- Los choques son elásticos y de duración despreciable.
En los choques entre las moléculas con las paredes del recipiente se conserva el ímpetu y (suponemos)la energía cinética. Debido a que el tiempo de choque es despreciable comparado con el tiempo que transcurre entre el choque de moléculas,la energía cinética que se convierte en energía potencial durante el choque, queda disponible de nuevo como energía cinética, después de un tiempo tan corto, que podemos ignorar este cambio por completo.
Ecuación General de los Gases
En las leyes de los gases, la de Boyle, la de Charles y la Gay Lussac, la masa del gas es fija y una de las tres variables,la temperatura, presión o el volumen, también es constante. Utilizando una nueva ecuación, no solo podemos variar la masa, sino también la temperatura, la presión y el volumen. La ecuación es:
P.V = n.R.T
De esta ecuación se despejan las siguientes incógnitas.
Volumen
Es la cantidad de espacio que tiene un recipiente. Medidos en Litros o en algunos de sus derivados.
V=n.R.T/P
Presión
Fuerza que ejerce el contenido de un recipiente, al recipiente.
P=n.R.T/V
Temperatura
Es la medida de calor que presenta un elemento. Es medida en °K
T=P.V/n.R
Número de partículas
Cantidad de partes (moles) presentes.
n=P.V/R.T
Características de Gas Ideal
Se considera que un gas ideal presenta las siguientes características:
- El número de moléculas es despreciable comparado con el volumen total de un gas.
- No hay fuerza de atracción entre las moléculas.
- Las colisiones son perfectamente elásticas.
- Evitando las temperaturas extremadamente bajas y las presiones muy elevadas, podemos considerar que los gases reales se comportan como gases ideales.
Propiedades de los gases
Los gases tienen 3 propiedades características: (1) son fáciles de comprimir, (2) se expanden hasta llenar el contenedor, y (3) ocupan mas espacio que los sólidos o líquidos que los conforman.
- COMPRESIBILIDAD
Una combustión interna de un motor provee un buen ejemplo de la facilidad con la cual los gases pueden ser comprimidos. En un motor de cuatro pistones, el pistón es primero sacado del cilindro para crear un vacío parcial, es luego empujado dentro del cilindro, comprimiendo la mezcla de gasolina/aire a una fracción de su volumen original.
- EXPANDIBILIDAD
Cualquiera que halla caminado en una cocina a donde se hornea un pan, ha experimentado el hecho de que los gases se expanden hasta llenar su contenedor, mientras que el aroma del pan llena la cocina. Desgraciadamente la misma cosa sucede cuando alguien rompe un huevo podrido y el olor característico del sulfito de hidrógeno (H2S), rápidamente se esparce en la habitación, eso es porque los gases se expanden para llenar su contenedor. Por lo cual es sano asumir que el volumen de un gas es igual al volumen de su contenedor.
- VOLUMEN DEL GAS VS. VOLUMEN DEL SOLIDO
La diferencia entre el volumen de un gas y el volumen de un líquido o sólido que lo forma, puede ser ilustrado con el siguiente ejemplo. Un gramo de oxígeno líquido en su punto de ebullición (-183°C) tiene un volumen de 0.894 mL. La misma cantidad de O2 gas a 0°C la presión atmosférica tiene un volumen de 700 mL,el cual es casi 800 veces más grande. Resultados similares son obtenidos cuando el volumen de los sólidos y gases son comparados. Un gramo de CO2 sólido tiene un volumen de 0.641 mL. a 0°C y la presión atmosférica tiene un volumen de 556 mL, el cual es mas que 850 veces más grande. Como regla general, el volumen de un líquido o sólido incrementa por un factor de 800 veces cuando formas gas.
La consecuencia de este enorme cambio en volumen es frecuentemente usado para hacer trabajos. El motor a vapor, esta basado en el hecho de que el agua hierve para formar gas (vapor) que tiene un mayor volumen. El gas entonces escapa del contenedor en el cual fue generado y el gas que se escapa es usado para hacer trabajar. El mismo principio se pone a prueba cuando utilizan dinamita para romper rocas. En 1867, Alfredo Nóbel descubrió que el explosivo líquido tan peligroso conocido como nitroglicerina puede ser absorbido en barro o aserrín para producir un sólido que era mucho más estable y entonces con menos riesgos. Cuando la dinamita es detonada, la nitroglicerina se descompone para producir una mezcla de gases de CO2, H2O, N2, y O2.

FUENTE
www.fisicanet.com.ar/.../gases/ap04_ley_de_boyle.php

COMENTARIOS DEL MAESTRO:
* El enlace no habre nada... de donde sacaste esta informacion?

LUIS

Mensajes : 31
Fecha de inscripción : 03/08/2009
Edad : 35
Localización : Chihuahua

Ver perfil de usuario

Volver arriba Ir abajo

Ver el tema anterior Ver el tema siguiente Volver arriba

- Temas similares

 
Permisos de este foro:
No puedes responder a temas en este foro.